Data Science @ Sioux LIME JIN & LIME

A peek at a recent project... SOURCE OF YOLR TEG-NOLOGY

Drs. ir. Mark van den Broek 15-06-2017

Big Data, Data Science, Machine Learning...

Artificial Intelligence

[

Data Mining

Data Science

4 N\
Big Data _wsenes - DATA
: P SCIENCE
—i—. MACHINE i 4 oo (] INSIGHT
LEARNING ENABLES -

L-... FACIUTATES ...

o
INTELLIGENCE | 1 - ¥¥e -
s —— DATA
Matural Larghusie Processing
Generative Models

"
i _+'PUSHES POST
N e =" FURTHER

Source: http://www.kdnuggets.com/2016/03/data-science-puzzle-explained.html

© Sioux LIME 2017 | Confidential 2

Sioux LIME - Company profile

s
e —
! son b T
Best .) . L.
i ot s
Qirschot eestseved m LIME LG
: SOURCE OF YOUR TECHNGL OGY f
£ . P AckTsE 2011 - now
_ gy _ BARRIER-HOEVEN
Ed ucation “‘ﬁ:{\;&é e [] Mathematlc_§ _ £4p 403 Ngerg:knﬁ 4
S ool WOENSEL-NOORD 1
= Physics TEMPEL Il \ i ARTEROEK <
4
b "f.‘é? ECKART
m Aerospace ;n"'-"ﬁ . PRINSELAGT 4 Nuenen
s

FLIGHT FORLIM

¥
;ug e)

& ?s""' - f : -]
: WOENSEL-ZUID A
W SRR GROENEWOLUD I u
"

STRIIP-5 e
BOS- EN X TU-TERRETN SR
ZANDRLIK SEHOOT :
2 LIEVENDAAL Eindhaven tiean 2005 - 2011
| HET VEN ol
mMSc | BINNENSTAD DOORNAKKERS-WEST 3 ;
GRASALIN - BEACKELEOSCH @
= PhD > HURK ’ IRISBUUAT, ———
— --__—_ -
" . - %,
5"3 SCHRIIVERSBLILAT E RCBL AR
Ll ~,
¥
L ' ' Geldro
N2 STRATUM P
= Veldh . 0 f [GIIZENADO
eldhoven ommel £
Fandneria ,..__!_ GESTEL i & =

© Sioux LIME 2017 | Confidential 3

Mathware

gl R el
AND SOFTWARE >.SO(\A" loNS Jo(\(\A\AQ‘:)

+\'\fou \r\ jc'\@f\l\j
()mot:leda(o\
exputise

(MRLLQWJ \'(aJ (ON ub)

© Sioux LIME 2017 | Confidential 4

Competences

Physics

Simulation

~N

(

component
understanding

r

\

Data
analytics

Statistics

N

J

© Sioux LIME 2017 | Confidential 5

Metrology

Calibration

-

.

Modeling

Optimization

N

J

system
overview

(

Operations
research

(

.

Scientific
programming

Algorithms

~\

J

~\

Data Science

Machine
Learning

U —

process
synthesis

é)

Image
analysis

. J

Clients

B) cyclomedua
PHENOMWORLD . e
M
)
A\ ANTOFAGASTA BOStO
Scientific

&- § MINERALS
P

'? ’_‘ : g "’f ': v
w

TELJIIN ASML >
N r bpa —

= on(a's
e g VANDERLANDE cgisier

© Sioux LIME 2017 | Confidential 6

Presentation overview

v" Short introduction of myself and Sioux LIME
= Case: Building a ‘virtual melon expert’ using Deep Learning

= ‘Technical walktrough’:
= How to practically tackle a case like this?!
= Methods and techniques used.

= Technology and tools used.

= Q&A

© Sioux LIME 2017 | Confidential 7

Case: Build a ‘melon expert’

Build a ‘virtual melon expert’ using Deep Learning technology.

Using computer vision (only), assess melons on a set of criteria.
Can we classify melon images according to their ‘net structure’?

Short project, proof of concept.

© Sioux LIME 2017 | Confidential

8

Classification — Supervised Learning

Supervised Learning Model
— Training —
Documents,

Images,
ate.

Mew Text,

“mege | =

etc,

Expected
Label

© Sioux LIME 2017 | Confidential 9

Neural Networks — key concepts

Hidden
Nodes

Lo

wo

dendr

w11

synapse
axon from a neuron.\y i

~ WpTo

te

cell body

Zw,—m,— +b

output axon

activation
function

Neurons learn
patterns!

=+ Ply=0|x

e Ply=1] 1)

— P2

© Sioux LIME 2017 | Confidential

10

Convolutional Neural Networks (CNNs)

iig

Stride
of 4

Max
pooling

Convolution layer Max-pooling layer

Input for
next layer

Features maps

Inputimage

dense dense
13 \ 3 \ 12 densa

3
3
13 3 [z 3 na
284 384 258 1000
Max
Max pooling 409¢ 4096
pooling

© Sioux LIME 2017 | Confidential

11

Deep Learning Software

interface(s)

TensorFlow Python, C++, Java From Google

Caffe Python, Matlab Strong in computer vision
MXNet Python, R, ... Choice of Amazon
Microsoft Cognitve Toolkit Python, C++

Torch C, Lua Coming from FB

Theano Python Used a lot in academia
Keras Python High-level framework
DeeplLearningForJ Java, Scala Well-documented

= We have used Caffe in this case.

© Sioux LIME 2017 | Confidential 12

What network (architecture) to use?!

Inception-v4

Inception-v3 ° . ResNet-152

80 4

75 [ResHet-50 . VGG-16 VGG-19
A ResNet-101
. ResNet-34
= 70- ﬁ ResNet-18
>
3 oo GoogleNet
5 ENet
S 65
'é; © BN-NIN
F 60 SM 35M 65M 95M 125M 155M

BN-AlexNet
55 AlexNet

50

* Image taken from ‘AN ANALYSIS OF DEEP NEURAL NETWORK MODELS
v r v . v v . . FOR PRACTICAL APPLICATIONS' by Alfredo Canziani e.a.

0 5 10 15 20 25 30 35 40

Operations [G-Ops]

= Take an existing network architecture. ‘Do not be a hero!
= Specific ‘project’ constraints/requirements usually give guidance.

= We have used AlexNet (and also tried SqueezeNet (not in picture)).

© Sioux LIME 2017 | Confidential 13

AlexNet-architecture

= AlexNet was developed in 2012 to win the ImageNet challenge.

= |t has 5 convolutional layers with 3 intermediate max pooling layers followed by
3 fully-connected layers.

= Number of parameters: around 60 million (!).

© Sioux LIME 2017 | Confidential 14

Setting up Caffe for GPU-based learning

How do we actually use Caffe to train and test a model?

You can install Caffe on a laptop with Ubuntu, OS X or even Windows...

|deally, we would like to be able to do GPU-based training.

Convenient alternative: “in the cloud” at e.g. Amazon Web Services (EC-2):

P2 Features

Powerful Performance

P2 instances provide up to 16 NVIDIA KB0 GPUs, 64 vCPUs and 732 GiB of host
memory, with a combined 192 GB of GPU memory, 40 thousand parallel
processing cores, 70 teraflops of single precision floating point performance,

and over 23 teraflops of double precision floating point performance. P2
instances also offer GPUDirect™ (peer-to-peer GPU communication) capabilities
for up to 16 GPUs, so that multiple GPUs can work together within a single host.

= A p2.xlarge machine (single GPU) costs around 1 USD/h.

= Machine images with Caffe installed are available, so you can start straight away!

© Sioux LIME 2017 | Confidential 15

Running Caffe on AWS via a Jupyter Notebook

| D e e
C | & ot secure | bHei54.171.10327:6888 ot fark/hupyterSZiblotebocki/Z0N20FeL a i
ujupyter 20 Feb 2017 Classification Las checrporn 02222017 A g
0 oo o
B + ¥ 2 B 4+ ¥+ N B C Coe * BB CefToolbar

e A

Let's take a classifier to investigate

In [221]: FOLDER = */home/e
model_file fﬁlb(l!
d pley protatxt = FOL
image_folder_path = °/

Caff
re,

In [353] ll t_file fihome fecd-user/Mark/Caffe image input files/Respos ype, valid_centralpatch,
mages, La bﬂs #4la_n. -u - get_images_from_file_s{1ist_file, s-sa Nldt - _p !M
vrobs get_output_sodel(images=images, model #ilewmode] file, deploy_prototxt=deploy_prototxt)
pred_labels = np.argmax(probs, axis=1)
true_labels=np. array(labels)

PP = get_sisclassificaticn_plots(pred_labels-pred_labels, true_labels=trus_labels)
print pp

ace = np.mean(true_labels == pred labels)
print “Accuracy: *, acc

<seaborn. axisg ethrid object at @u7idddcbdccdds
Accuracy: @, 7$);am§2331

5 true_label = 0 true label = 1 true_label = 2
0

5

pradicted labal pradicted labal predicted label
N trus_label = 3 true_label = & true_label = 5

L

= A convenient way of working with Caffe (PyCaffe) is using a Jupyter Notebook.
= Start a Jupyter Notebook server from your instance at AWS
= Connect to this server through your local browser.
= Open a notebook (located on your AWS instance).

= Start coding and running notebook cells from your browser.

© Sioux LIME 2017 | Confidential

16

Defining a network architecture in Caffe

= In Caffe, a network architecture is defined in a ‘.prototxt’-file:

nama: "Ala=Net”

g e § layer {

nama: "data”

typs: "ImageDazs” name: "data"

e2p: "data” - w

cop: "laba1® type: "ImageData

“::::lnm top: "data"

3} -

teansfoem pasam | FOD ¢ "label"
Biescr, trs o) include {
§ csop a "esop_size” = "csop_size” patch:

L - 4 - at zandem dusing tsaining phase: TRAIN

- fzem tha centar dusing testing }
erap_siza: 1585

3}

image_data_pasam | transform param {
;:::::h::'n:llm-unm:kfmn image input filea/Rasponss_typs net/List teain cse' mirror: true
shuffle: tsue - z - - z - »
seot_foldes: "//homafeci-uses/Mask/Tata/1%2dpi Samesize 1585x1308/" * crop a crop_SJ'ze X crop_SJ'ze patCh'

: # - at random during training

]
— | “ur""f _—_— # - from the center during testing

Syps: “Imagebaza® crop size: 1985

top: “data™ -

zop: "labal" }

inclads | z
phase: TEST image data param {

R source: "//home/ec2-user/Mark/Caffe image in
£ i TAL 1 -
® ::; a 'n::p_u.-l' = “ceop_aisa” paten: bﬁtch_SlZE. 18

L < # - at zandom during teaining shuffle: true

4 - fsom the cantes dusing testing
ccop_sica: 1385 root folder: "//home/ec2-user/Mark/Data/192d

; —

image_data_param | }
Bousta: "//homa/eti-wies/Mark/CaIfe 1mage 1npst filed/RASPAnda_Type_Kat/Liat_valld.cav"
Bateh_sisé: 10 }
Bhaflla: Tzud

=oot_foldas: *//homa/eci-uies/Mask/Data/152dpi Samasiss 1S@Sx15@8/"
1

1
o B layer {
— :::E:f....p- name: "data_ closeup"”
potrem: -aata” type: "Python"

top: "data_closswp”

- Bython_paeam | bottom: "data"
modula: “data clom o
layes: -n.udm,;:;u_x- top: "data closeup"
| pemmste: o python param {

i;,“. module: "data_closeup 1"
iy layer: "DataCloseupLayer_ 1"
:::a:;‘:;:mmp- param str: "{}"
pazam { }

||

© Sioux LIME 2017 | Confidential 17

Setting the solver parameters

W 0 =] oo W A

10

12
13
14
15
16
17
18

3 test_iter specifies how many forward passes the test should carry out.

¥ After every test_interval training iterations, test_iter * batch size images are fetched for testing.
test_iter: 1

Carry out testing every 1 training iterations.

test_interval: 1

base 1r: 0.01

display: 1

max_iter: 320000

lr policy: "poly"

power: 1

momentum: 0.1

weight decay: 0.5

snapshot: 5000

snapshot prefix: "alexnet cvgj"

random seed: 0

net: "/home/ec2-user/Mark/Caffe network files/26 januari 2017 Learning rate 1l/train.prototxt"™
test_initialization: true

iter size: 2

= We need to tell the solver a few things:

Learning rate (scheme), momentum.

The network we want to train/solve/optimize.

Regularization penalty (weight_decay).

© Sioux LIME 2017 | Confidential

18

Preparing our data...

——————————————
/ b
' Hyper-
parameter
1 |tuning
Split Datasets |

E-- ! > Eulld Training
Models L results

Historical Data Training

= Generated a train,

validation and test set:

T o o o o

P
— lﬁ | Validation ’ 60%-20%-20%.
e C 1 [| results
e Validatio ‘o U __________ s
Hold-out Test

= Resize images to 227x227: AlexNet input dimensions.
= Actually, we have taken central 454x454 patches and downsized these.

= What about data augmentation? - | come back to that quickly.

© Sioux LIME 2017 | Confidential 19

How to avoid overfitting?
What to do when having limited data?

= |n general, Supervised Learning is about the ‘bias-variance’ trade off.

X
Underfitting Just right! overfitting

= Underfitting is typically not a problem when using CNNs...but overfitting is...

= We will now look at some methods to avoid overfitting and improve the

generalization capabilities of a model.

© Sioux LIME 2017 | Confidential 20

Transfer Learning

In our case (and many other cases), data is limited.
How to optimize 60 million parameters, based on ca. only 1000 images??

Transfer Learning offers a potential solution for this problem.

Transfer learning: take a ‘pre-trained’ model and use this.
We have taken a pre-trained variant of the AlexNet-architecture.

See e.g. the Caffe Model Zoo for many (pre-trained) networks.
How to use a pre-trained model?

= As a feature extractor (either from top or middle activations).

= Retrain / fine-tune the weights of the final layer(s).

© Sioux LIME 2017 | Confidential 21

Data Augmentation (‘on the fly’)

= Augmenting the data (images) is a means to avoid overfitting.

= Preferably, this data augmentation is done on-the-fly (and not off-line).

= This means that an input batch during training is augmented/transformed in real-time to a
batch containing modified images.

= Possible ways to augment your data, based on original images:

Rotation: rotate an image around a random angle.
Translation: translate an image randomly in x and y direction.

Rescaling: apply a random scaling factor to the image.
Contrast/brightness: adjust contrast/brightness with a random amount.

Random crops: take a random ‘patch’ of the (larger) image.

= We implemented this in Caffe using a ‘custom Python Layer"’.

© Sioux LIME 2017 | Confidential

22

Other techniques to improve generalization
and/or prevent overfitting

= Drop-out / Drop-connect:
= Randomly remove neurons/connections from network while training.
= Weights regularization i
IH
= ‘Penalize parameters for being non-zero'. e bl
. gu | ing Set Accuracy
= Early stopping :
!
= E.g. via monitoring a validation error. B /m
|

= So-called ‘learning curve’ gives aclue... e

Collect more data... &\f“ e

training set size

© Sioux LIME 2017 | Confidential 23

Training our classifier

= Network architecture chosen; modified the last layer to have only 6 outputs.
= Configured the solver file with training (hyper)parameters.

= Loaded the pre-trained model weights / parameters.

= Prepared the data for input: central patch + resize.

= Added (“on the fly”) data augmentation.

= Develop some (basic) code to train a classifier and monitor (validation set) performance.

= Start training and ‘tune’ the hyper-parameters.

1.0 T T T ~ =

0.8

0.6

Loss

0.4

Accuracy

0.2

o Now F o o~ @
T T T T |

0.0

1 L L L)
0 20 40 60 80 100 0 20 40 60 80 100

Number of iterations Number of iterations

© Sioux LIME 2017 | Confidential

24

Questions?!

© Sioux LIME 2017 | Confidential 25

