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Big Data, Data Science, Machine Learning...
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Source: http://www.kdnuggets.com/2016/03/data-science-puzzle-explained.html
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Sioux LIME - Company profile
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Presentation overview

v" Short introduction of myself and Sioux LIME
= Case: Building a ‘virtual melon expert’ using Deep Learning

= ‘Technical walktrough’:
= How to practically tackle a case like this?!
= Methods and techniques used.

= Technology and tools used.

= Q&A
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Case: Build a ‘melon expert’

Build a ‘virtual melon expert’ using Deep Learning technology.

Using computer vision (only), assess melons on a set of criteria.
Can we classify melon images according to their ‘net structure’?

Short project, proof of concept.
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Classification — Supervised Learning

Supervised Learning Model
— Training —
Documents,

Images,
ate.

Mew Text,

“mege | =

etc,

Expected
Label

© Sioux LIME 2017 | Confidential 9



Neural Networks — key concepts
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Convolutional Neural Networks (CNNs)
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Deep Learning Software

interface(s)

TensorFlow Python, C++, Java From Google

Caffe Python, Matlab Strong in computer vision
MXNet Python, R, ... Choice of Amazon
Microsoft Cognitve Toolkit Python, C++

Torch C, Lua Coming from FB

Theano Python Used a lot in academia
Keras Python High-level framework
DeeplLearningForJ Java, Scala Well-documented

= We have used Caffe in this case.
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What network (architecture) to use?!
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0 5 10 15 20 25 30 35 40

Operations [G-Ops]

= Take an existing network architecture. ‘Do not be a hero!
= Specific ‘project’ constraints/requirements usually give guidance.

= We have used AlexNet (and also tried SqueezeNet (not in picture)).
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AlexNet-architecture

= AlexNet was developed in 2012 to win the ImageNet challenge.

= |t has 5 convolutional layers with 3 intermediate max pooling layers followed by
3 fully-connected layers.

= Number of parameters: around 60 million (!).
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Setting up Caffe for GPU-based learning

How do we actually use Caffe to train and test a model?

You can install Caffe on a laptop with Ubuntu, OS X or even Windows...

|deally, we would like to be able to do GPU-based training.

Convenient alternative: “in the cloud” at e.g. Amazon Web Services (EC-2):

P2 Features

Powerful Performance

P2 instances provide up to 16 NVIDIA KB0 GPUs, 64 vCPUs and 732 GiB of host
memory, with a combined 192 GB of GPU memory, 40 thousand parallel
processing cores, 70 teraflops of single precision floating point performance,

and over 23 teraflops of double precision floating point performance. P2
instances also offer GPUDirect™ (peer-to-peer GPU communication) capabilities
for up to 16 GPUs, so that multiple GPUs can work together within a single host.

= A p2.xlarge machine (single GPU) costs around 1 USD/h.

= Machine images with Caffe installed are available, so you can start straight away!
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Running Caffe on AWS via a Jupyter Notebook
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Let's take a classifier to investigate

In [221]: FOLDER = */home/e
model_file fﬁlb(l!
d pley protatxt = FOL
image_folder_path = °/

Caff
re,

In [353] ll t_file fihome fecd-user/Mark/Caffe image input files/Respos ype, valid_centralpatch,
mages, La bﬂs #4la_n. -u - get_images_from_file_s{1ist_file, s-sa Nldt - _p !M
vrobs get_output_sodel(images=images, model #ilewmode] file, deploy_prototxt=deploy_prototxt)
pred_labels = np.argmax(probs, axis=1)
true_labels=np. array(labels)

PP = get_sisclassificaticn_plots(pred_labels-pred_labels, true_labels=trus_labels)
print pp

ace = np.mean(true_labels == pred labels)
print “Accuracy: *, acc

<seaborn. axisg ethrid object at @u7idddcbdccdds
Accuracy: @, 7$);am§2331

5 true_label = 0 true label = 1 true_label = 2
0

5

pradicted labal pradicted labal predicted label
N trus_label = 3 true_label = & true_label = 5

L

= A convenient way of working with Caffe (PyCaffe) is using a Jupyter Notebook.
= Start a Jupyter Notebook server from your instance at AWS
= Connect to this server through your local browser.
= Open a notebook (located on your AWS instance).

= Start coding and running notebook cells from your browser.
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Defining a network architecture in Caffe

= In Caffe, a network architecture is defined in a ‘.prototxt’-file:

nama: "Ala=Net”

g e § layer {

nama: "data”

typs: "ImageDazs” name: "data"

e2p: "data” - w

cop: "laba1® type: "ImageData

“::::lnm top: "data"

3} -

teansfoem pasam | FOD ¢ "label"
Biescr, trs o ) include {
§ csop a "esop_size” = "csop_size” patch:

L - 4 - at zandem dusing tsaining phase: TRAIN

# - fzem tha centar dusing testing }
erap_siza: 1585

3}

image_data_pasam | transform param {
;:::::h::'n:llm-unm:kfmn image input filea/Rasponss_typs net/List teain cse' mirror: true
shuffle: tsue - z - - z - »
seot_foldes: "//homafeci-uses/Mask/Tata/1%2dpi Samesize 1585x1308/" * crop a crop_SJ'ze X crop_SJ'ze patCh'

: # - at random during training

]
— | “ur""f _—_— # - from the center during testing

Syps: “Imagebaza® crop size: 1985

top: “data™ -

zop: "labal" }

inclads | z
phase: TEST image data param {

R source: "//home/ec2-user/Mark/Caffe image in
£ i TAL 1 -
® ::; a 'n::p_u.-l' = “ceop_aisa” paten: bﬁtch_SlZE. 18

L < # - at zandom during teaining shuffle: true

4 - fsom the cantes dusing testing
ccop_sica: 1385 root folder: "//home/ec2-user/Mark/Data/192d

; —

image_data_param | }
Bousta: "//homa/eti-wies/Mark/CaIfe 1mage 1npst filed/RASPAnda_Type_Kat/Liat_valld.cav"
Bateh_sisé: 10 }
Bhaflla: Tzud

=oot_foldas: *//homa/eci-uies/Mask/Data/152dpi Samasiss 1S@Sx15@8/"
1

1
o B layer {
— :::E:f....p- name: "data_ closeup"”
potrem: -aata” type: "Python"

top: "data_closswp”

- Bython_paeam | bottom: "data"
modula: “data clom o
layes: -n.udm,;:;u_x- top: "data closeup"
| pemmste: o python param {

i;,“. module: "data_closeup 1"
iy layer: "DataCloseupLayer_ 1"
:::a:;‘:;:mmp- param str: "{}"
pazam { }

||
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Setting the solver parameters
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3 test_iter specifies how many forward passes the test should carry out.

¥ After every test_interval training iterations, test_iter * batch size images are fetched for testing.
test_iter: 1

# Carry out testing every 1 training iterations.

test_interval: 1

base 1r: 0.01

display: 1

max_iter: 320000

lr policy: "poly"

power: 1

momentum: 0.1

weight decay: 0.5

snapshot: 5000

snapshot prefix: "alexnet cvgj"

random seed: 0

net: "/home/ec2-user/Mark/Caffe network files/26 januari 2017 Learning rate 1l/train.prototxt"™
test_initialization: true

iter size: 2

= We need to tell the solver a few things:

Learning rate (scheme), momentum.

The network we want to train/solve/optimize.

Regularization penalty (weight_decay).

© Sioux LIME 2017 | Confidential
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Preparing our data...

——————————————
/ b
' Hyper-
parameter
1 |tuning
Split Datasets |

E-- ! > Eulld Training
Models L results

Historical Data Training

= Generated a train,

validation and test set:

T o o o o

P
— lﬁ | Validation ’ 60%-20%-20%.
e C 1 [ | results
e Validatio ‘o U __________ s
Hold-out Test

= Resize images to 227x227: AlexNet input dimensions.
= Actually, we have taken central 454x454 patches and downsized these.

= What about data augmentation? - | come back to that quickly.
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How to avoid overfitting?
What to do when having limited data?

= |n general, Supervised Learning is about the ‘bias-variance’ trade off.

X
Underfitting Just right! overfitting

= Underfitting is typically not a problem when using CNNs...but overfitting is...

= We will now look at some methods to avoid overfitting and improve the

generalization capabilities of a model.
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Transfer Learning

In our case (and many other cases), data is limited.
How to optimize 60 million parameters, based on ca. only 1000 images??

Transfer Learning offers a potential solution for this problem.

Transfer learning: take a ‘pre-trained’ model and use this.
We have taken a pre-trained variant of the AlexNet-architecture.

See e.g. the Caffe Model Zoo for many (pre-trained) networks.
How to use a pre-trained model?

= As a feature extractor (either from top or middle activations).

= Retrain / fine-tune the weights of the final layer(s).
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Data Augmentation (‘on the fly’)

= Augmenting the data (images) is a means to avoid overfitting.

= Preferably, this data augmentation is done on-the-fly (and not off-line).

= This means that an input batch during training is augmented/transformed in real-time to a
batch containing modified images.

= Possible ways to augment your data, based on original images:

Rotation: rotate an image around a random angle.
Translation: translate an image randomly in x and y direction.

Rescaling: apply a random scaling factor to the image.
Contrast/brightness: adjust contrast/brightness with a random amount.

Random crops: take a random ‘patch’ of the (larger) image.

= We implemented this in Caffe using a ‘custom Python Layer"’.

© Sioux LIME 2017 | Confidential
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Other techniques to improve generalization
and/or prevent overfitting

= Drop-out / Drop-connect:
= Randomly remove neurons/connections from network while training.
= Weights regularization i
IH
= ‘Penalize parameters for being non-zero'. e bl
. gu | ing Set Accuracy
= Early stopping :
!
= E.g. via monitoring a validation error. B /m
|

= So-called ‘learning curve’ gives aclue... e

Collect more data... &\f“ e

training set size
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Training our classifier

= Network architecture chosen; modified the last layer to have only 6 outputs.
= Configured the solver file with training (hyper)parameters.

= Loaded the pre-trained model weights / parameters.

= Prepared the data for input: central patch + resize.

= Added (“on the fly”) data augmentation.

= Develop some (basic) code to train a classifier and monitor (validation set) performance.

= Start training and ‘tune’ the hyper-parameters.

1.0 T T T ~ =

0.8

0.6

Loss

0.4

Accuracy

0.2

o Now F o o~ @
T T T T |

0.0

1 L L L )
0 20 40 60 80 100 0 20 40 60 80 100

Number of iterations Number of iterations

© Sioux LIME 2017 | Confidential

24



Questions?!
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