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Big Data, Data Science, Machine Learning…

Source: http://www.kdnuggets.com/2016/03/data-science-puzzle-explained.html



© Sioux LIME 2017 | Confidential 3

2011 - now

2005 - 2011

Education Mathematics

Physics

Aerospace

Level

MSc
PhD

Sioux LIME - Company profile



© Sioux LIME 2017 | Confidential 4

Mathware



component
understanding

component
understanding

component
understanding

system
overview

system
overview

system
overview

process
synthesis

process
synthesis

process
synthesis

© Sioux LIME 2017 | Confidential 5

Competences

Physics 

Simulation

Metrology

Calibration

Operations 
research

Data Science

Machine 
Learning

Data 
analytics

Statistics

Scientific 
programming

Algorithms

Image 
analysis

Modeling

Optimization



componentcomponentcomponent systemsystemsystem processprocessprocess

© Sioux LIME 2017 | Confidential 6

Clients
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Presentation overview

Short introduction of myself and Sioux LIME

 Case: Building a ‘virtual melon expert’ using Deep Learning

 ‘Technical walktrough’:

 How to practically tackle a case like this?! 

 Methods and techniques used.

 Technology and tools used.

 Q&A
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Case: Build a ‘melon expert’

 Build a ‘virtual melon expert’ using Deep Learning technology.

 Using computer vision (only), assess melons on a set of criteria. 

 Can we classify melon images according to their ‘net structure’?

 Short project, proof of concept.
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Classification – Supervised Learning
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Neural Networks – key concepts

Classification
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Convolutional Neural Networks (CNNs)
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Deep Learning Software

 We have used Caffe in this case. 

Name Interface(s) Remarks
TensorFlow Python, C++, Java From Google

Caffe Python, Matlab Strong in computer vision

MXNet Python, R, … Choice of Amazon

Microsoft Cognitve Toolkit Python, C++

Torch C, Lua Coming from FB

Theano Python Used a lot in academia

Keras Python High-level framework

DeepLearningForJ Java, Scala Well-documented

….
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What network (architecture) to use?! 

 Take an existing network architecture. ‘Do not be a hero!’ 

 Specific ‘project’ constraints/requirements usually give guidance. 

 We have used AlexNet (and also tried SqueezeNet (not in picture)). 

* Image taken from ‘AN ANALYSIS OF DEEP NEURAL NETWORK MODELS 
FOR PRACTICAL APPLICATIONS’ by Alfredo Canziani e.a. 
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AlexNet-architecture

 AlexNet was developed in 2012 to win the ImageNet challenge. 

 It has 5 convolutional layers with 3 intermediate max pooling layers followed by 
3 fully-connected layers. 

 Number of parameters: around 60 million (!). 
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Setting up Caffe for GPU-based learning

 How do we actually use Caffe to train and test a model? 

 You can install Caffe on a laptop with Ubuntu, OS X or even Windows...

 Ideally, we would like to be able to do GPU-based training.  

 Convenient alternative:  “in the cloud” at e.g. Amazon Web Services (EC-2):

 A p2.xlarge machine (single GPU) costs around 1 USD/h. 

 Machine images with Caffe installed are available, so you can start straight away!
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Running Caffe on AWS via a Jupyter Notebook

 A convenient way of working with Caffe (PyCaffe) is using a Jupyter Notebook. 
 Start a Jupyter Notebook server from your instance at AWS

 Connect to this server through your local browser.

 Open a notebook (located on your AWS instance). 

 Start coding and running notebook cells from your browser. 
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Defining a network architecture in Caffe

 In Caffe, a network architecture is defined in a ‘.prototxt’-file: 
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Setting the solver parameters

 We need to tell the solver a few things:
 Learning rate (scheme), momentum.

 The network we want to train/solve/optimize. 

 Regularization penalty (weight_decay).

 ….
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Preparing our data…

 Resize images to 227x227: AlexNet input dimensions. 

 Actually, we have taken central 454x454 patches and downsized these. 

 What about data augmentation?  I come back to that quickly.

 Generated a train, 

validation and test set: 

60%-20%-20%. 



© Sioux LIME 2017 | Confidential 20

How to avoid overfitting?
What to do when having limited data?
 In general, Supervised Learning is about the ‘bias-variance’ trade off.

 Underfitting is typically not a problem when using CNNs…but overfitting is…

 We will now look at some methods to avoid overfitting and improve the 

generalization capabilities of a model. 
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Transfer Learning

 In our case (and many other cases), data is limited. 

 How to optimize 60 million parameters, based on ca. only 1000 images??

 Transfer Learning offers a potential solution for this problem.  

 Transfer learning: take a ‘pre-trained’ model and use this.

 We have taken a pre-trained variant of the AlexNet-architecture. 

 See e.g. the Caffe Model Zoo for many (pre-trained) networks. 

 How to use a pre-trained model?

 As a feature extractor (either from top or middle activations). 

 Retrain / fine-tune the weights of the final layer(s). 
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Data Augmentation (‘on the fly’)

 Augmenting the data (images) is a means to avoid overfitting. 

 Preferably, this data augmentation is done on-the-fly (and not off-line).

 This means that an input batch during training is augmented/transformed in real-time to a 
batch containing modified images. 

 Possible ways to augment your data, based on original images:
 Rotation: rotate an image around a random angle. 
 Translation: translate an image randomly in x and y direction. 
 Rescaling: apply a random scaling factor to the image. 
 Contrast/brightness: adjust contrast/brightness with a random amount.
 Random crops: take a random ‘patch’ of the (larger) image. 

 We implemented this in Caffe using a ‘custom Python Layer’. 
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Other techniques to improve generalization 
and/or prevent overfitting

 Drop-out / Drop-connect:

 Randomly remove neurons/connections from network while training. 

 Weights regularization

 ‘Penalize parameters for being non-zero’. 

 Early stopping

 E.g. via monitoring a validation error. 

 Collect more data…

 So-called ‘learning curve’ gives a clue…
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Training our classifier
 Network architecture chosen; modified the last layer to have only 6 outputs.
 Configured the solver file with training (hyper)parameters.
 Loaded the pre-trained model weights / parameters. 
 Prepared the data for input: central patch + resize.  
 Added (“on the fly”) data augmentation. 
 Develop some (basic) code to train a classifier and monitor (validation set) performance.  
 Start training and ‘tune’ the hyper-parameters.  
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Questions?!


