
Data Science @ Sioux LIME

A peek at a recent project…

Drs. ir. Mark van den Broek 15-06-2017

© Sioux LIME 2017 | Confidential 2

Big Data, Data Science, Machine Learning…

Source: http://www.kdnuggets.com/2016/03/data-science-puzzle-explained.html

© Sioux LIME 2017 | Confidential 3

2011 - now

2005 - 2011

Education Mathematics

Physics

Aerospace

Level

MSc
PhD

Sioux LIME - Company profile

© Sioux LIME 2017 | Confidential 4

Mathware

component
understanding

component
understanding

component
understanding

system
overview

system
overview

system
overview

process
synthesis

process
synthesis

process
synthesis

© Sioux LIME 2017 | Confidential 5

Competences

Physics

Simulation

Metrology

Calibration

Operations
research

Data Science

Machine
Learning

Data
analytics

Statistics

Scientific
programming

Algorithms

Image
analysis

Modeling

Optimization

componentcomponentcomponent systemsystemsystem processprocessprocess

© Sioux LIME 2017 | Confidential 6

Clients

© Sioux LIME 2017 | Confidential 7

Presentation overview

Short introduction of myself and Sioux LIME

 Case: Building a ‘virtual melon expert’ using Deep Learning

 ‘Technical walktrough’:

 How to practically tackle a case like this?!

 Methods and techniques used.

 Technology and tools used.

 Q&A

© Sioux LIME 2017 | Confidential 8

Case: Build a ‘melon expert’

 Build a ‘virtual melon expert’ using Deep Learning technology.

 Using computer vision (only), assess melons on a set of criteria.

 Can we classify melon images according to their ‘net structure’?

 Short project, proof of concept.

© Sioux LIME 2017 | Confidential 9

Classification – Supervised Learning

© Sioux LIME 2017 | Confidential 10

Neural Networks – key concepts

Classification

© Sioux LIME 2017 | Confidential 11

Convolutional Neural Networks (CNNs)

© Sioux LIME 2017 | Confidential 12

Deep Learning Software

 We have used Caffe in this case.

Name Interface(s) Remarks
TensorFlow Python, C++, Java From Google

Caffe Python, Matlab Strong in computer vision

MXNet Python, R, … Choice of Amazon

Microsoft Cognitve Toolkit Python, C++

Torch C, Lua Coming from FB

Theano Python Used a lot in academia

Keras Python High-level framework

DeepLearningForJ Java, Scala Well-documented

….

© Sioux LIME 2017 | Confidential 13

What network (architecture) to use?!

 Take an existing network architecture. ‘Do not be a hero!’

 Specific ‘project’ constraints/requirements usually give guidance.

 We have used AlexNet (and also tried SqueezeNet (not in picture)).

* Image taken from ‘AN ANALYSIS OF DEEP NEURAL NETWORK MODELS
FOR PRACTICAL APPLICATIONS’ by Alfredo Canziani e.a.

© Sioux LIME 2017 | Confidential 14

AlexNet-architecture

 AlexNet was developed in 2012 to win the ImageNet challenge.

 It has 5 convolutional layers with 3 intermediate max pooling layers followed by
3 fully-connected layers.

 Number of parameters: around 60 million (!).

© Sioux LIME 2017 | Confidential 15

Setting up Caffe for GPU-based learning

 How do we actually use Caffe to train and test a model?

 You can install Caffe on a laptop with Ubuntu, OS X or even Windows...

 Ideally, we would like to be able to do GPU-based training.

 Convenient alternative: “in the cloud” at e.g. Amazon Web Services (EC-2):

 A p2.xlarge machine (single GPU) costs around 1 USD/h.

 Machine images with Caffe installed are available, so you can start straight away!

© Sioux LIME 2017 | Confidential 16

Running Caffe on AWS via a Jupyter Notebook

 A convenient way of working with Caffe (PyCaffe) is using a Jupyter Notebook.
 Start a Jupyter Notebook server from your instance at AWS

 Connect to this server through your local browser.

 Open a notebook (located on your AWS instance).

 Start coding and running notebook cells from your browser.

© Sioux LIME 2017 | Confidential 17

Defining a network architecture in Caffe

 In Caffe, a network architecture is defined in a ‘.prototxt’-file:

© Sioux LIME 2017 | Confidential 18

Setting the solver parameters

 We need to tell the solver a few things:
 Learning rate (scheme), momentum.

 The network we want to train/solve/optimize.

 Regularization penalty (weight_decay).

 ….

© Sioux LIME 2017 | Confidential 19

Preparing our data…

 Resize images to 227x227: AlexNet input dimensions.

 Actually, we have taken central 454x454 patches and downsized these.

 What about data augmentation?  I come back to that quickly.

 Generated a train,

validation and test set:

60%-20%-20%.

© Sioux LIME 2017 | Confidential 20

How to avoid overfitting?
What to do when having limited data?
 In general, Supervised Learning is about the ‘bias-variance’ trade off.

 Underfitting is typically not a problem when using CNNs…but overfitting is…

 We will now look at some methods to avoid overfitting and improve the

generalization capabilities of a model.

© Sioux LIME 2017 | Confidential 21

Transfer Learning

 In our case (and many other cases), data is limited.

 How to optimize 60 million parameters, based on ca. only 1000 images??

 Transfer Learning offers a potential solution for this problem.

 Transfer learning: take a ‘pre-trained’ model and use this.

 We have taken a pre-trained variant of the AlexNet-architecture.

 See e.g. the Caffe Model Zoo for many (pre-trained) networks.

 How to use a pre-trained model?

 As a feature extractor (either from top or middle activations).

 Retrain / fine-tune the weights of the final layer(s).

© Sioux LIME 2017 | Confidential 22

Data Augmentation (‘on the fly’)

 Augmenting the data (images) is a means to avoid overfitting.

 Preferably, this data augmentation is done on-the-fly (and not off-line).

 This means that an input batch during training is augmented/transformed in real-time to a
batch containing modified images.

 Possible ways to augment your data, based on original images:
 Rotation: rotate an image around a random angle.
 Translation: translate an image randomly in x and y direction.
 Rescaling: apply a random scaling factor to the image.
 Contrast/brightness: adjust contrast/brightness with a random amount.
 Random crops: take a random ‘patch’ of the (larger) image.

 We implemented this in Caffe using a ‘custom Python Layer’.

© Sioux LIME 2017 | Confidential 23

Other techniques to improve generalization
and/or prevent overfitting

 Drop-out / Drop-connect:

 Randomly remove neurons/connections from network while training.

 Weights regularization

 ‘Penalize parameters for being non-zero’.

 Early stopping

 E.g. via monitoring a validation error.

 Collect more data…

 So-called ‘learning curve’ gives a clue…

© Sioux LIME 2017 | Confidential 24

Training our classifier
 Network architecture chosen; modified the last layer to have only 6 outputs.
 Configured the solver file with training (hyper)parameters.
 Loaded the pre-trained model weights / parameters.
 Prepared the data for input: central patch + resize.
 Added (“on the fly”) data augmentation.
 Develop some (basic) code to train a classifier and monitor (validation set) performance.
 Start training and ‘tune’ the hyper-parameters.

Number of iterations Number of iterations

Ac
cu

ra
cy

Lo
ss

© Sioux LIME 2017 | Confidential 25

Questions?!

